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Abstract. Compton scattering of a circularly polarised photon beam is shown to provide 
direct information on orbital and spin magnetisation densities. Experiments are reported 
which demonstrate the feasibility of the method by correctly predicting the ratio of spin to 
orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV 
photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic 
interference scattering which is measured by a field-difference method. Theory shows that 
the interference cross section contains the Compton profile of polarised electrons modulated 
by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, 
the scattering geometry for which the structure factor vanishes yields a unique value for the 
ratio of the magnetisation densities. Compton scattering, being an incoherent process, 
provides data on total unit-cell magnetisations which can be directly compared with bulk 
data. In this respect, Compton scattering complements magnetic neutron and photon Bragg 
diffraction. 

1. Introduction 

It has been recognised for some time that magnetic photon Bragg diffraction has an 
advantage over neutron diffraction inasmuch as it can be used to separately determine 
spin and orbital magnetisation densities in solids (for reviews see, e.g., de Bergevin and 
Brunel 1986, Cooper 1987). This has already been exploited in diffraction studies of 
antiferromagnets such as holmium where the weak magnetic reflections are separate 
from the Bragg peaks (Gibbs et a1 1988); the situation is more difficult in ferromagnets 
where charge and magnetic peaks are superimposed. Here, we point out that the 
Compton limit of high-energy photon scattering, which is inelastic and incoherent, also 
provides a direct method of separating spin and orbital densities in ferromagnets. 
We report the first observations at the Synchrotron Radiation Source (SRS) facility, 
Daresbury, using, as examples, metallic ferromagnets. 

The success of the experiments reported hinges on the observation that charge- 
magnetic interference induced by circular polarisation is a weighted sum of spin and 
orbital magnetisations and vanishes for a particular scattering geometry. The inter- 
ference term is isolated in the scattering intensity from the (dominant) pure charge and 
pure magnetic contributions by switching the polarity of a field applied to the sample 
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and recording the difference signal. The angles that define the configuration at which 
the signal vanishes are obtained by fitting data sets recorded as a function of the 
orientation of the magnetic field relative to the incident beam, the incident and scattered 
beam directions being fixed. From a knowledge of the vanishing point a unique value 
for the ratio of the spin to orbital magnetisation densities is obtained. 

In magnetic photon diffraction from solids the magnetic information is in Bragg 
peaks. Unfortunately, the structure factor limits the number of peaks that can be 
measured since it vanishes in the forward direction and at large scattering vectors. 
Compton scattering is shown to provide information on the total spin and orbital unit- 
cell magnetisations which directly relates to bulk magnetisation measurements. In this 
respect, Compton scattering is different from photon and neutron diffraction, but the 
various data sets are clearly complementary. 

Magnetic neutron diffraction data for atomic form factors do not usually extrapolate 
smoothly to a value in accord with the measured bulk magnetic moment (Moon 1986). 
Data on metallic ferromagnets are consistent with a spin form factor, normalised to 
unity in the forward direction, scaled by a factor 1 + a, where a is typically about 0.20. 
The physical interpretation of a is the subject of debate, but an appealing picture is that 
it arises from an essentially uniform background of negative magnetisation induced in 
conduction electrons. In any event, this component of the magnetisation density is more 
or less uniform in space. Hence, in a diffraction pattern it appears in the forward direction 
and it is absent in observed Bragg peaks. However, a uniform magnetisation is contained 
in the Compton scattering data because it relates to the bulk magnetisation density and 
its association with low-momentum electrons is confirmed in the magnetic Compton 
profile (Cooper et a1 1988, Collins et a1 1989). 

Our theoretical material is presented in the next two sections, which are followed by 
a description of the experiment and findings for metallic ferromagnets. In the first 
theoretical section we discuss the cross section for scattering a circularly polarised photon 
beam from a magnetic material and report the form of the amplitude appropriate far 
from any resonance events. The cnai ge-magnetic interference term induced by circular 
polarisation can be observed by a magnetic field difference technique, for example. The 
derivation of the Compton limit of the cross section is taken up in section 3. The 
experimental set-up, described in section 4, is similar to that adopted for magnetic 
Compton measurements (Collins et a1 1989). The analysis of data for iron and cobalt is 
described in section 5 and conclusions are gathered in section 6. 

2. Photon cross section 

We begin by recording a compact expression for the non-relativistic partial differential 
cross section in terms of a correlation function formed with the scattering amplitude 
operator. Let E = hcq and E‘ = hcq’ denote the energies of the incident and scattered 
photons. The changes in wavevector and energy in the scattering process are k = q - q’ 
and hw = E - E’,  respectively. The polarisation states are described in terms of a 
density matrix p ,  defined in accord with Balcar and Lovesey (1989), and G(k)  denotes 
the scattering amplitude whose explicit form, in terms of polarisation vectors and atomic 
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quantities, is given later in the section. With these definitions the cross section for 
scattering into an element dS2 of solid angle is 

d 2a E‘ d t  -= 
d Q  d E ’  ” 2 n h  - exp( -iwt) Tr[p(G+(k)G(k, t))]. 

Here, re is the classical electron radius, the trace operation is with respect to polarisation 
states and ( ,  . .) denotes the thermal average of the enclosed quantity. The Heisenberg 
operator G(k, t), in which t has the dimension of time, is formed in the standard manner; 
the definition is used in the following section. 

An expression for G(k) is obtained from the work of Grotch et a1 (1983). We 
represent it in terms of a 2 x 2 matrix notation for plane polarisation states, defined with 
polarisation vectors e,  e’ using the scheme displayed in figure 6.2 of Balcar and Lovesey 
(1989). The expression for G(k) given there is recovered from the following expression 
in the elastic limit w = 0. The expression, which encompasses inelastic events, is found 
to be 

G(k) = n(k)e’ e - ig[S(k) B + Z ( k )  (e’ X e)] (2 .2)  
where g = E/m,c2. This result is obtained from a perturbation expansion in g which in 
the work reported here is 45/510 and thus small enough to ensure the soundness of 
equation (2.2) as the basis of an interpretation. Using the notations b = E‘/E, a = 
(1 + b ) / 2 ,  q = q/q and similarly for the unit vector q’ ,  

(2.3) 
( a  - b)q  - ( a  - b cos 0)q’ 

0 ) q  + (1 - U)#  (b  + 1 - a ) ( q  X 4’) 

The angle between 4 and q’ is denoted by 0 in this expression. 
The atomic quantities in (2.2) involve the position Ri, spin si and momentum pi of 

the electron labelled j .  The spatial Fourier transforms of the charge and spin-density 
operators are 

n(k) = exp(ik R ~ )  (2.4) 
i 

and 

S(k) = z e x p ( i k . R i ) s ,  drexp(ik-r)M,(r)  
i 

while 

i 
z(k)  = - exp(ik Rj) (q  - q’ /b )  x pi  

hq2 j 

will be shown to be related to the orbital angular momentum density M L ( r ) .  
The various terms in the cross section (2.1) can be generated from (2.2) and (2.3) 

using the method employed by Balcar and Lovesey (1989). Here the charge-magnetic 
interference term induced by circular polarisation in the incident photon beam is of 
particular interest. This component of Tr[pG+(k)G(k)] is readily shown to be 
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where E = E‘/E - 1 = -hw/E and P2 is the component of the Stokes vector that 
describes circular polarisation. Some algebra is necessary to establish the result 

Z ( k )  * (4 + 4’ COS e )  = {[-(1 +COS 6)k2]/[q2(2 + &)]}TL(k)  * (4  + 4‘) (2.8) 

in which the orbital angular momentum operator 

-i  
T , ( k )  = 71i;i? exp(ik.Rj)(k x p j )  drexp( ik- r )k  X [ML(r )  X k ] } .  (2.9) 

In the limit of elastic scattering E = 0 and the result (2.7) with (2.8) reduces to the 
corresponding result given by Balcar and Lovesey (1989). Note that the magnetic density 
equals M s  = ML. 

Finally we give the form of (2.7) for the scattering geometry in which the spin and 
orbital densities M s  and ML are aligned by a magnetic field that is at an angle a to the 
incident beam, as illustrated in figure 1. We find that 

g n f ( k ) P 2  ~drexp(ik.r)j[lM,(r){(l-cor 8)(2cos e c o s a  
2P B 

+ sin e sin a) + ( ~ / 2 )  [cos a(1 + 3 cos e ) ( i  -cos e )  
+ sin e sin a (1 - 3 cos e)]} + M L ( r )  [sin e(1 + cos e)/2(2 + E ) ]  

x (4 sin(@) cos(a- 33) + &[sin a+ (3 + E) sin(8 - a)]}] 

- --i drexp( ik*r )  [M,(r)E(e, a ) + M L ( r ) ( ( 6 ,  a)] (2.10) 
P B  

and the equality defines spin and orbital geometric factors and (, respectively, that are 
convenient to use in subsequent developments. 

It is useful to note that the geometric factors in (2.10) assume a quite simple form for 
the special case 8 = n/2. In this instance the quantity enclosed by the open-face brackets 
reduces to 

Ms(r)[sin a+ (e/2)(cos a+ sin a)] + iM,(r)[sin a+ (1 + E) cos a] .  (2.11) 

The Compton limit of the contribution to the cross section made by (2.10) is derived in 
the following section. 

3. The Compton limit 

By the Compton limit of the cross section we mean the form achieved for high-energy 
incident photons and a large scattering vector. In this context it is useful to note that for 
6 = n/2, E = 45 keV and E’ = 40 keV we have k = vq2 + q t 2  = 30 A-’. 

We illustrate a method by which to extract the Compton limit of the polarisation- 
induced contribution to the cross section by reporting steps involved for the orbital part 
of (2.10). The arguments used can be applied to any contribution to the cross section 
but in the experiments reported only the interference term is measured. Returning to 
(2.1) and using (2.10) it is evident that we need to consider the limiting form of the 
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correlation function (if the momentum density is purely real, the correlation functions 
formed with n+M and M+n are identical) 

&exp(-iwt) ( n f ( k )  1 drexp(ik.r)  M L ( r ,  t)). 
--2 

The first step is to insert the explicit expression for the charge density (2.14) and the 
Heisenberg operator ML(r ,  t) defined for the total electron Hamiltonian H. At the same 
time we insert 1 = exp[ik - (Rj - R,)] to obtain the correlation function 

x d r  exp[ik (r - R j ) ]  M L ( ~ )  exp (-F)). - 

The effect of the similarity transformation on exp(iHt/h) is to shift the momentum 
operatorpi in H by an amount hk; the transformed Hamiltonian is denoted by H' .  From 
the invariance of the correlation function to a cyclic permutation of operators (3.2) is 
equal to 

Thus far we have just rearranged the correlation function (3.1). To pass to the Compton 
limit we introduce two approximations which are good for large E and k.  

First, we combine the two exponential operators in (3.3) as if H and H' commute. 
The error involved can be shown to mean the neglect of the force on the jth electron 
generated by electron correlations and the ion potentials. This step is equivalent to 
invoking the impulse approximation which is believed to be good when E greatly exceeds 
electron binding energies. If the momentum operators in H only appear in the kinetic 
energy, i.e. relativistic terms are negligible, then 

H' - H = (h/2m*)(hk2 + 2k . p i )  

where m* is the effective electron mass. We also introduce the momentum density 
distribution operator through the identity 

in order to get 

exp (T) exp f?) -- exp ( -iHt it(H' - H) 
) 

The first factor will give the explicit time-dependent part of the correlation function in 
the Compton limit. Since it is not an operator the time Fourier transform in (3.1) can be 
completed, and it produces a delta function which expresses conservation of energy. 

The second approximation we make to (3.3) stems from the large value of k in the 
Compton limit. In view of this, the spatial phase factor in (3.3) averages to zero unless 
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r = Ri. This is often referred to as the incoherent approximation. Invoking this and using 
(3.4) we find that the correlation function (3.1) reduces to the following form: 

where no is the electron number density. 
The static correlation function in (3.5) is assumed to factor into the product of the 

momentum density of the polarised electrons engaged in the magnetisation, and the 
unit-cell orbital magnetisation density, denoted by p ( q )  and ,uBFL, respectively. It can 
be shown that the factorisation occurs for electrons in atomic orbitals or Wannier band 
states. 

Turning now to the Compton limit of the spin contribution to the interference term, 
the argument is the same with M L  in (3.5) replaced by Ms.  Factorisation of the static 
correlation function in this instance is reasonable if relativistic terms are negligible. The 
unit-cell spin density is defined as yBFs. 

In the interpretation of scattering from polarised band electrons it is clear that the 
momentum density distributions in general differ for the spin and orbital contributions. 
For electrons in a single band the distributions are generated from n(q t ) +- n(q .1 ) 
where n(qa) is the occupation function for the band labelled by the wavevector q and 
spin index a. We have assumed that the difference is minimal, i.e. for a single-band 
model the majority spin band dominates. When this condition is not well satisfied 
our simple interpretation, which employs a factorisation and a common momentum 
distribution, is dubious. The secure route is to compare data with calculated values of 
the weighted momentum distributions, namely 

c (d(h4  - P,)Ms(R,)) .  
I 

E ( W q  - P,)ML(R,N 
I 

From the analysis of data given in section 5 it seems that our simple theory is adequate 
especially because in this experiment the integral over the Compton profile, rather than 
its spectral distribution, is recorded. 

Assembling our results, the Compton limit of the interference contribution to the 
cross section is, apart from a factor r : E ’ / E ,  

( 3 . 6 ~ )  ( l / no>[FsE(e ,  4 + F L 5 (  8 , 4 1 W  
in which the Compton profile of polarised electrons is 

h 
2m * J(k)  = dq p(q)6 ( w  - - ( k 2  + 2k * q ) )  (3.6b) 

and in the experiments reported below where the integrated Compton flux is recorded: 
+r j-, J ( k , )  d w  = no. 

The geometric factors Zj and are defined through (2 .10) .  These are dimensionless 
quantities, as also are Fs/no and FL/no. The form of (3.6), namely the Compton profile 
modulated by a magnetic structure factor, is in accord with the experimental findings, 
reported in section 5. 

In a neutron diffraction experiment the results are usually presented in terms of a 
unit-cell magnetisation structure factor F(k). This is related to Fs and FL by F(0)  = 
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I 

Figure 1. A schematic diagram of the experiment 
viewed from above. The white beam is extracted at 
about Q mrad above the orbital plane and mono- 
chromated by a plane Ge 111 crystal M .  The sample 
S is clamped across the tapered poles of an iron-cored 
electromagnet which rotates about a vertical axis 
through the face of the sample and periodically 
reverses the field H .  In these experiments 8, the scat- 
tering angle, was fixed and a was varied. The scat- 
tered radiation is recorded by D, a germanium 
semiconductor detector. The hatched areas denote 
collimators. 

20" 40" 60" 
Angle a" - 

Figure 2. The measured fractional magnetic effect in 
iron (open circles) and cobalt (full circles), plotted 
against the angle a, defined in figure 1. The crossover 
angles a* were obtained from a linear least-squares 
fit (full lines) over the angular ranges 15-30" and 15- 
45" for iron (left-hand ordinate) and cobalt (right- 
hand ordinate), respectively. The experimental 
errors in the magnetic modulation are roughly indi- 
cated by the size of the circles representing the data 
points. 

Fs + FL, which is a component of the diffraction pattern that is not accessible in a Bragg 
diffraction experiment, of course. 

The structure factor FsE + FLC in (3.6) may vanish for a particular scattering 
geometry, as discussed in section 4. Given the values of g(8, a) and E(8, a) for this 
geometry, obtained from a knowledge of the angles 8 and CY, we immediately find a 
value for the ratio FL/Fs. For simple ferromagnets, with one atom per unit cell, FL and 
Fs are proportional to the orbital and spin magnetic moments, and FL/Fs is the ratio of 
the orbital to spin gyromagnetic factors. 

For example, in 3d transition-metal magnets, in which the orbital moment is small 
and due largely to the spin-orbit interaction, 

F L P S  = (g - 2)/2 (3.7) 

where g is the gyromagnetic factor. In the case of a rare-earth ion, characterised by spin, 
orbital and total angular momentum quantum numbers, S, L and J ,  respectively, the 
corresponding result is 

F L / F s  = g L / g s  = [ J ( J  + 1) + L(L  + 1) - S(S + 1 ) ] / 2 [ ~ ( ~  + 1) - L(L + 1) + s(s + 111. 
(3.8) 
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Values of this ratio Hi+ and Sz ions, for example, are 1.5 and -1.2, respectively. In a 
ferrimagnet with a vanishingly small net moment it is not necessary for Fs and FL to be 
individually equal to zero. 

4. The experiment 

A suitable test of the theory summarised in (3.6) is to measure values of 8 and a where 
the magnetic structure factor vanishes and the scattered intensity is independent of the 
polarity of the applied field. From these angles the ratio FL/Fs can be deduced. Two 
techniques are immediately apparent: either acan  be fixed and the magnetic modulation 
measured as a function of 8,  or vice versa. It turns out that the sensitivity of the two 
techniques is similar, so for simplicity the scattering angle was kept fixed. 

Calculations show that over a fairly wide angular range around the zero or crossover 
point a*, the fractional magnetic modulation is a linear function of the beam-to-mag- 
netisation angle a to a very good approximation. Determination of a+ is therefore 
facilitated by a least-squares fit of the experimental data to a straight line. Since the 
experimental arrangement is similar to that adopted for magnetic Compton lineshape 
measurements (Collins et a1 1989) it will be described only briefly here. 

Radiation from the centre of the 5 T  wiggler magnet at the Daresbury SRS was 
monochromated by a single Ge 111 reflection and scattered from a polycrystalline 
sample, clamped between the poles of an electromagnet (figure 1). The long thin shape 
of the sample ensured that the magnetisation direction was along its length. The beam- 
to-magnetisation angle a was adjusted by rotating the magnet-sample arrangement 
about a vertical axis. Scattered radiation was detected by a germanium solid state 
detector with a pre-detector slit to reduce the range of scattering angles observed. All 
observed scattering was in the horizontal plane. By raising the whole system by several 
millimetres the radiation source was viewed at some small angle above the orbital plane, 
thus using the 'inclined view' method to obtain a beam with a high degree of circular 
polarisation. The magnetic modulation, or fractional magnetic effect, was obtained by 
reversing the magnetising field direction in an asynchronous cycle and measuring the 
fractional change in Compton scattered intensity between the two field directions. One 
of the most important aspects of this technique of searching for a zero point in the 
magnetic modulation is that it is insensitive to systematic errors and completely inde- 
pendent of beam polarisation. The polarisation is therefore only important for optimis- 
ation of the experiment. Some experimental parameters are given in table 1. 

The choice of scattering angle 8 is very important. As the quantity of interest is the 
beam-to-magnetisation angle where the magnetic structure factor vanishes, 6' should 
clearly be chosen so that this occurs within the range of accessible angles. Furthermore, 
some scattering angles give far greater sensitivity to FL/Fs than others because both the 
precision to which a* can be measured and the sensitivity of this angle to FL/Fs are 
functions of 8. Calculations based on equation (3.6) and the known polarisation charac- 
teristics of the wiggler radiation (Laundy 1990, Collins et a1 1990) indicate that, if FL/Fs 
is small, as is the case for transition metals, a scattering angle of around 100" is appro- 
priate. In this case, scattering in the horizontal plane is preferable because charge 
scattering of the dominant linearly polarised component is minimised. The ratio of 
magnetic to charge scattering is almost an order of magnitude higher than if a vertical 
scattering geometry had been adopted. 
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Table 1. Experimental parameters. 

Incident bean energy 45 keV 
Average scattered beam energy 40 keV 
Scattered angle 0 98O 
Monochromator bandpass 0.4 keV 
Sample dimensions 
Source-to-monochromator distance = 35 m 
Incident beam width 2 mm 
Incident beam height 6 mm 
Height above or below axis 6 mm 

= 0.5 
= 0.8 

8 mm 

50mm x 8 m m  x 1 mm 

Degree P, of circular polarisation 
Degree P3 of linear polarisation 
Detector diameter 16 mm 
Detector horizontal slit width 
Sample-to-detector distance 150 mm 
Compton count rate 
Field reversal period 2 s  

(1-4) x 104 s-1 

Using the simple scattering table described, the absolute values of 8 and a could not 
be determined to a precision of better than around 2". This restriction was overcome by 
comparing the crossover angles for two samples of the same dimensions, as the difference 
in a* can be determined precisely. Iron and cobalt polycrystals were chosen for the first 
measurements as they have large moments at room temperature and the ratios F,/F, 
are well known from independent g-factor measurements. A third sample, HoFe2, was 
also measured as it was expected to have a large orbital moment at room temperature. 
The fractional magnetic effect in the Compton intensity was measured at various a 
angles, with many points repeated to check reproducibility. As a further test, some of 
the measurements were repeated by viewing the radiation source from below, rather 
than above, the orbital plane where the hand of polarisation is reversed. Data were 
collected for approximately 24 h for each of the three samples. 

5. Experimental results 

The data collected on iron and cobalt are presented in figure 2. It will be shown that 
these data agree very well with predictions. Data on the complex magnetic system HoFe2 
were of poorer statistical quality owing to high absorption and the smaller fraction of 
unpaired electrons. Despite the poorer quality of the data, some interesting departures 
from expected values were found. As these departures are not, as yet, fully understood, 
it is anticipated that HoFe2 will form the subject of a separate communication. In this 
paper, only the cobalt and iron data will be analysed. 

Useful information on the scattering system can be obtained both from the slope of 
the fractional magnetic effect against a,  and from the value a* where the line crosses 
zero. The slopes of the cobalt and iron data plots are different by a factor of about 3 
owing to the different net moments induced in the samples. This is well understood by 
a comparison with magnetic induction measurements performed at room temperature 
with the same magnet and sample arrangement. Of far greater interest are the crossover 
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angles which were obtained from a linear least-squares fit of data near to the crossover 
points. The following angles were found: 

Fe: a* = 16.3(3)' CO: a* = 13.4(8)". 

Since uncertainties in the scattering angle were around 2", the difference between these 
two angles is of far greater significance than individual absolute values. A simple method 
of comparing the two crossover angles is to use the iron data to determine the scattering 
angle precisely and then compare the deduced value of FL/Fs for cobalt with predictions. 

For iron, FL/Fs = (g - 2)/2 = 0.046 (Wohlfarth 1980). For the given crossover angle 
and beam energies a scattering angle 6' of 98.30(15)" was predicted. This agrees very 
well with values of 6' = 97(2)" and l O O ( 2 ) O  measured geometrically and deduced from 
the Compton shift, respectively. Using this precise value for the scattering angle in the 
iron experiment, the ratio FL/Fs for cobalt was calculated to be 0.107(18). This is in 
excellent agreement with the value of 0.094 obtained from independently measured g- 
factors. 

6 .  Conclusions 

We have shown that for magnetic Compton scattering the geometrical conditions for 
the vanishing of the magnetic structure factor can be related in a simple way to the ratio 
of orbital to spin moments in a ferromagnet. This has been confirmed from preliminary 
Compton measurements on iron and cobalt where the observed orbit-to-spin ratio is 
consistent with the independently determined g-factor. The technique is likely to be of 
most benefit to the study of systems with comparable spin and orbital moments, where 
the ratios are unknown and are unobtainable by other experimental methods. Such 
Compton measurements, which yield structure factors at k = 0, are complementary to 
technically difficult magnetic diffraction experiments where magnetic scattering at low 
momentum transfers is very weak. These data are more easily obtained, but require 
improved statistical precision. 

Future theoretical work should include a study of the approximation employed in 
section 3 .  Of particular concern is the range of validity of the factorisation and use of a 
common distribution for the spin and orbital weighted momentum distributions. Note, 
however, that this source of uncertainty in the interpretation has been largely eliminated 
in this total scattering experiment by integrating over all scattered beam energies. It 
can therefore be shown that the total cross section evaluated with the incoherent 
approximation is proportional to the magnetic structure factor in equation ( 3 . 6 ~ )  pro- 
vided it is safe to neglect the energy dependence of 5 and 5.  In our experiments the m- 
dependence of these quantities is indeed very mild, and hence the average values of 5 
and can be used to a good approximation, namely w equal to the Compton shift given 
in table 1. When such a procedure is justified it follows that the factorisation proposed 
in section 3 is consistent with the total cross section (often referred to as the static 
approximation) and this gives us added confidence in the factorisation. 
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